

**Still House Tower
Tavistock
Devon**

2024 INSPECTION REPORT

FOR

Tavistock Town Council

Prepared by: Charlotte Shobbrook RIBA AABC
Checked by: Simon Crosbie MA Arch Cons

Le Page Architects Ltd

Plumer House

Tailyour Road

Plymouth

PL6 5DH

CONTENTS

1.0 Introduction

- 1.01 Status and Occupancy
- 1.02 Building History and Significance

2.0 Conduct of the Inspection

- 2.01 Scope of the Inspection
- 2.02 Drainage and other documents
- 2.03 Personnel
- 2.04 Weather Conditions

3.0 Work carried out since previous inspection

4.0 General state of the building and its setting

- 4.01 Summary of Findings
 - a. General Structure
 - b. Rainwater Disposal and External Drainage
 - c. External Wall Surfaces
 - d. Roof Structure
 - e. External Door
 - f. Internal wall faces

5.0 Recommendations

- 5.01 Repair recommendations

Appendix A

Photographs

1.0 Introduction

1.01 Status and Occupancy

The buildings are owned by Tavistock Town Council (TTC).

1.02 Building History and Significance

Name: STILL HOUSE AND ABBEY WALL

List entry Number: 1105870

Grade: II

1. 5185 ABBEY WALK

Still House and Abbey Wall (formerly listed under Plymouth Road) SX 4874 4/6 7.9.51

II GV

2. Mediaeval. The 'Still-House' is a small square tower in the south-east corner of the Vicarage garden which was perhaps part of the infirmary buildings. Height about 20 ft. Built of granite with crenellated parapet and 4 centred arches windows with hood moulding and spandrels, one with cinquefoil facing the river. East of this there is a length of wall following the line of the River Tavy and originally forming the southern boundary of the Abbey precincts. Crenellated wall about 14 ft in height built of granite and incorporating one pointed arched granite doorway.

Scheduled Ancient Monument.

Listing NGR: SX4817774277

2.0 Conduct of the Inspection

2.01 Scope of the Inspection:

TTC has commissioned Le Page Architects to undertake a non-invasive comprehensive condition survey and work plan outlining future repairs to the building.

The author of this report undertook the visual inspection in December 2024. It is based on the findings of an inspection made from ground and first level and cherry picker high level access. Unless otherwise stated, the inspection has been purely visual, no enclosed spaces or inaccessible parts such as boarded floors, or hidden timbers have been opened up for inspection. High powered zoom lenses were used to take accurate photographs of the roof and other features.

The following particular areas were not inspected:-

- a. Inaccessible roof voids.
- b. Voids between suspended floors.
- c. Flues and ducts.
- d. Only sample external pointing locations inspected.
- e. Manhole covers where not lifted.
- f. Timber panelling was not removed.
- g. Fittings and furniture were not removed.
- h. Floor coverings were not lifted.
- i. Parts of building covered or hidden by storage.

- j. Floor boards were not lifted.
- k. Heating installation was not tested.
- l. Electrical installation was not tested.

This report indicates the general up to date visual condition of the exterior and interior of the building, it does not pretend to be fully comprehensive or to give definite solutions. It is stressed that it must not be used as a specification for work. Professional advice should always be sought prior to instigating any repair work. Amateur work, however well intended, should not be undertaken as incorrectly carried out remedial repairs can often do more harm than good and may possibly be inappropriate to the historic nature of the building. Indeed, insensitive repairs (even minor repairs) can easily destroy the architectural character and aggravate a technical problem. It is emphasised that nothing in this report is intended to imply criticism of any person.

2.02 Drainage and other documents

No documents have been obtained pertaining to drainage or other requirements.

2.03 Personnel

The inspection team was met initially by Ian Lashbrook of TTC.

2.04 Weather Conditions

The weather conditions on the day of the first inspection were clear skies and cold. The conditions of the subsequent visit was overcast but dry.

3.0 Work Carried out since previous inspection

- Windows internally boarded with osb
- No other known works

4.0 General State of the Building and its Setting

4.01 Summary of Findings

The building is, as a whole, in sound condition, however, there is a large amount of damp to the internal structure.

a. General Structure

As in the previous inspection, the structure appears reasonably sound and is constructed from local Hurdwick stone with shillet being built over two phases (Exeter Archaeology Report). It is generally suffering from high levels of vegetation growth to the roof slab (**images 31 & 32**) and battlement wall tops, as well as substantial ivy growth to the north-east corner (**image 6**). As before, all elevations are suffering from dampness to the stonework both internally and externally. The modern inappropriate hard pointing mixes remain to all internal and external elevations. It was noted that the underside of the concrete floor/roof was dripping with water on our first visit (**image 26**) and internally there is a significant amount of damp.

The upper storey windows have all been boarded from the inside with osb board (**images 18, 19 & 21**), this has become severely damp in places and although it deters unwanted entry into the building it is not a suitable long term solution and a suitable alternative is required.

b. Rainwater Disposal and External Drainage

There is a granite roof outlet to the north elevation which is currently blocked with vegetation and soil. This was not possible to view. The granite chute does, however, appear in good condition. Tavistock Town Council should ensure this is regularly cleared.

c. External Wall Surfaces

Parapet Level

As previously noted, the walls are formed from similar stone to those of the main faces pointed in hard sand/cement mix. This is now starting to fall away in places where stone displacement is occurring. Wall tops remain covered with deep moss and there is a large amount of vegetation growing over the roof (**images 31 & 32**). Reviewing the images from the previous inspection in 2017, there is a noticeable increase in the amount of vegetation to the roof. This should be cleared to prevent further damage to the walls or roof structure.

As before, 3no. merlons were noted as missing. One is on the deck of the roof, and the other 2 are thought to be in storage. It would be beneficial to bring these back to site and secure them in the upper storey room to ensure they are not lost.

Previously it was noted that 3 other merlons could be rocked on their beds, the one to the north easily in particular, it was not possible to access the roof and test these at the time of the survey. As no work has been carried out since the last inspection it is assumed that these remain loose and in need of rebedding.

The previous inspection noted that to the East elevation there is a large diameter former plant base to the wall top. It was not possible to visually establish this at the time of inspection due to the amount of vegetation growth to the roof. The previous notes stated that it had been cut back to wall top level, but stone and pointing displacement has/is occurring around its base. In addition, the very large root that has grown is exposed to the wall mid height of the parapet depth and this is now also displacing stone and pointing. It is assumed this remains if not worsened.

North Elevation

Missing merlon stone.

The walls are formed from Hurdwick random coursed stonework with granite tracery window, as well as dressed Hurdwick window and trefoil openings. This opening was not visible (externally) through the overgrown brambles surrounding it (**image 7**). Modern hard pointing in various locations with apparent recent lime pointing in patches mainly to upper southern corner and west of doorway. Some vegetation mainly to upper parapet stones, as well as ivy growth to the east of the elevation and along the stairs.

Granite quoins to western upper corner below parapet.

Main entrance door formed in Hurdwick stone with voussoirs over (**image 16**). Granite access steps leading up from ground level to doorway with granite threshold are in sound condition, but are heavily coated in vegetation, including ivy which has extended into the wall pointing adjacent (**image 8**).

The steps are served by a wrought iron handrail and balustrade posts (**image 30**). These are in sound condition, but would benefit from re-decoration to protect it.

South Elevation

The upper wall section is severely damp (**image 5**) with extreme surface moisture to both the stonework and pointing, probably exacerbated by the large overhanging tree directly opposite. This tree inhibits access and it would be beneficial to trim it back from the building (**image 3**).

To the southern wall heavy vegetation occurs to its top situated above the granite framed door surround (**images 10 & 11**). Wrought iron door pins are present to the vertical granite. The door is formed from stained modern softwood in a ledge and braced design and is in good condition.

Sockets to the wall occur adjacent to the door opening as well as deep voids between the wall stonework and the granite surround pieces (**image 13**). There are patches of cement pointing to the granite surround of the door which are failing.

Granite quoins to eastern upper corner below parapet with missing merlon.

There is a single window opening to this elevation at the higher level, the stone although in sound condition does show signs of minor erosion (**image 14**) which should be monitored. The biological growth to the head should be removed as this will increase the speed of erosion (**image 19**).

West Elevation

This elevation is again suffering from severe dampness particularly to its southern half (**image 1**).

Granite tracery stone to the upper window as well as the ground floor door surround. A small crack was noted in the head stone to the granite door surround (**image 12**). There is hard cement pointing to the granite tracery surround to this door that is failing and needs replacing with a suitable lime-based mortar (**image 15**).

Evidence of harder pointing throughout the stonework in general.

East Elevation

The previous notes still stands: Missing granite merlon stone, as well as loose merlon to the parapet. It was not possible to check this, but Tavistock Town Council confirmed no works. Therefore, it is assumed to still be loose and in need of rebedding.

Granite tracery window to upper floor with slatestone door opening.

Damp stonework to the majority of the elevation.

Vousoir stones to former doorway, concaving and bulging of stonework noted (**image 18**).

There is a substantial amount of ivy growth to the north-east corner of the building and access to the east elevation is restricted by the planting in the Bedford Hotel garden (**images 4 & 6**).

d. Roof Structure

The roof structure is a modern concrete slab built off the existing granite roof corbels. As previously noted deterioration of the soffit is occurring in several places and the reinforcement bars are now exposed.

There is cause for concern at the condition of the perimeter joints of the slab and the parapet walls, which considering the amount of surface water to the first-floor internal wall faces, and in particular to the eastern elevation, must be considered to have failed in its pointing at the joints.

There are also roots coming in through the wall/roof junction from the vegetation growing on the roof and up the walls (**image 25**).

e. External Door

As before, the upper softwood ledge and braced external door is in reasonable condition and weatherproof, but needs decoration to provide it with longevity of life. The locks should also be regularly checked as it was not possible to gain access on the initial inspection as the keys would not work and the locks were difficult to open on the second visit.

f. Internal Wall Faces

Upper Storey

This largely remains the same as the previous inspection. The larger windows to the upper storey have been boarded and although providing security and some shelter from the elements does reduce the ventilation to the room and can add to the damp.

South

Surface damp to the wall face is evident (**image 24**) for most of overall area, with the moisture and algae growth clearly visible from the roof slab down two thirds of the face.

There remains inappropriate modern cement slurry pointing, in large upper and lower level patches to the wall too.

The tracery stone still appears in sound condition to the window with the slatestone lintel over appearing sound.

There are 2no. sockets of missing stone still to the east corner.

North

As before, the wall has severe internal surface damp to its face, and is evident for all of the overall area. In particular damp can be seen at the junction of the wall to the concrete roof slab over (**image 27**).

There remains inappropriate modern cement slurry pointing in large patches to this wall face, too.

The cut stone is in sound condition to the small window and to the granite door surround also, (although as before there is damage to the frame where the original lock mechanism was housed).

Lime based pointing to wall is failing through damp attack and can be easily peeled away in clumps.

Western

The upper face of the wall from corner to corner is damp and is probably the likely cause of the rotten timber lintel to the opening (**image 21**). Brick infills have been installed with cement mortar and appear to both sides of the window opening and to the lining of the former fireplace below. Granite corbels sit at roof deck level. Former flue to fireplace remains (partially).

There is a socket of missing stone to south-west corner.

Extensive lime based (course aggregate) pointing remains to stonework and is in reasonable condition, as the wall is damp it can erode the mortar quicker than if it were kept dry/allowed to dry out.

Damp patches can be seen at the junction of the concrete roof slab over and the wall face.

Eastern

Evidence is clear to a large water ingress point to the roof joint to the upper north corner. The remainder of the wall is again severely damp, with large deposits of algae particularly to the former door recess where the stone faces are wet to the touch (**image 22**).

As previously noted, above this, large cement slurry has been undertaken, although the wall below and above the smaller window opening retains lime pointing only.

Extensive lime based (course aggregate) pointing remains to stonework and is in sound condition.

As before, there is damage occurring to the upper corner of the eastern window with delamination, cracking and loss of stonework. Possible minimal bearing to the slatestone lintel over at the wall return.

There are noticeable plant and ivy roots coming through the wall to this face, most likely linked to the vegetation growth on the wall and roof/parapet (**image 25**).

Ground Floor

In general, there is a large amount of damp to the walls as evident in biological growth. The most likely cause is the external cement pointing and vegetation growth externally as the walls are not being allowed to breathe or dry out.

South

Brick infill to wall.

Course aggregate NHL pointing to stonework appears in sound condition.

Damp ingress to wall from concrete floor slab over where water is seeping through, but also more severe damp to lower section particularly where perimeter walls abut and where extensive external damp can be seen.

There are some gaps in the pointing to the internal arch of the small tracery window in this elevation that is in need of repointing (**image 23**).

North

As before the previous notes still stand: Water ingress point can be seen to concrete slab over where wall below is damp to the touch, with high levels of algae and mould growth to all the wall area (**images 28 & 29**).

Western

As before the previous notes still stand: Course aggregate NHL pointing to stonework in sound condition.

Some mould present to stonework and damp ingress from above can be seen at junction of concrete slab over (**image 29**).

Eastern

As before the previous notes still stand: Severe displacement of key stone over door with rear stonework delaminating and splitting away.

Painted softwood door to opening in sound condition.

Water ingress is occurring to the wall more than likely from the severe damp above; water ingress point can be clearly seen at concrete floor slab over. The ivy growth will also be increasing the internal damp levels.

Large amount of algae and moss growth to masonry where damp (**images 33 & 34**).

5.0 Recommendations

5.01 Repair Recommendations

a. Roof to the building

Remove all vegetation to concrete deck and parapet wall tops. Treat all roots within walls with suitable chemical weed killer. Ensure all soil and vegetation is taken from area to reduce future re-growth. This should be carried out twice a year, as general maintenance of the building to prevent further harm being caused to the building

As previously noted Schedule, photograph and number stonework to area of large plant root ball and roots within the eastern elevation. Remove stonework and set aside. Fully and completely remove all vegetation and chemically treat areas. Re-bed stones in exact locations bedded in NHL pointing and bedding mix based on laboratory analysis build up.

Carefully remove and re-bed loose merlons to parapet wall top in NHL pointing and bedding mix based on laboratory analysis build up.

Re-set missing merlons to parapet stones currently lying on roof deck & being stored off site in NHL pointing and bedding mix based on laboratory analysis build up.

Allow to repoint joint of modern concrete roof slab and parapet stonework in NHL 5 mix to arrest ingress of water to room below.

Allow to treat cleared roof top with suitable concrete slurry to protect the roof structure.

Ensure roof outlet is clear of debris.

b. External Walls of main building (ground to battlement levels including parapet inner faces)

Remove all vegetation, in particular the ivy growing to the north east corner. Treat all roots within walls with suitable chemical weed killer.

The building should be checked biannually to ensure vegetation growth does not take hold and can be managed.

Allow to Doff clean walls, in particular around the tracery to the windows where there is a substantial amount of biological growth, as well as the high level parapet stones.

Undertake full analysis and site investigation with archaeologist of current pointing off site erected external perimeter scaffolding.

Allow to remove all modern hard mix cement pointing back to depth twice that of joint height(s).

Allow to remove all defective lime-based Archaeologist-agreed non-contentious pointing.

Repoint all raked out joints in laboratory analysis based mix of NHL pointing.

Remove all saturated osb board to window openings and replace with stainless steel bars to fit into existing sockets in tracery.

Allow to locally clean wrought iron handrail and balusters to ST2 standard. Paint in high quality external gloss paint system. Take a mesh barrier down the handrail of the steps all the way to ground level.

Allow to rake out and repoint boundary wall to the west of the still house on both sides where pointing is missing and use stone shims to the open joints of the arch to the doorway and stone gallets to the larger open joints as required.

Allow for pinning to head stone of arch on the opening to the west elevation where cracked.

c. Internal walls of main building (upper and ground storey).

Allow to doff clean down all internal wall, ceilings and floor faces of algae, moss and mould.

Carefully hand remove all modern cement slurry and pointing to stonework using hand tools only.

Carefully remove any defective lime pointing.

Repoint internal walls with suitable lime-based mix based on laboratory analysis.

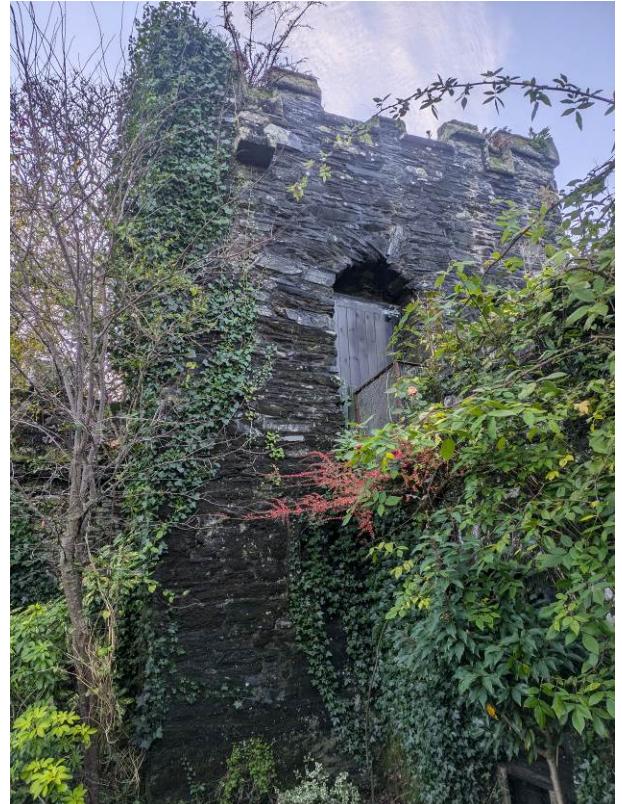
Where noted offer up Hurdwick stone to wall sockets bedded and pointed in NHL mix to match main stonework.

Allow to re-position displaced voussoir stones to internal east elevation doorway head. Schedule, photograph and number stonework to area. Remove stonework and set aside. Re-bed voussoir and door head soffite stones in exact locations bedded in NHL pointing and bedding mix based on laboratory analysis build up.

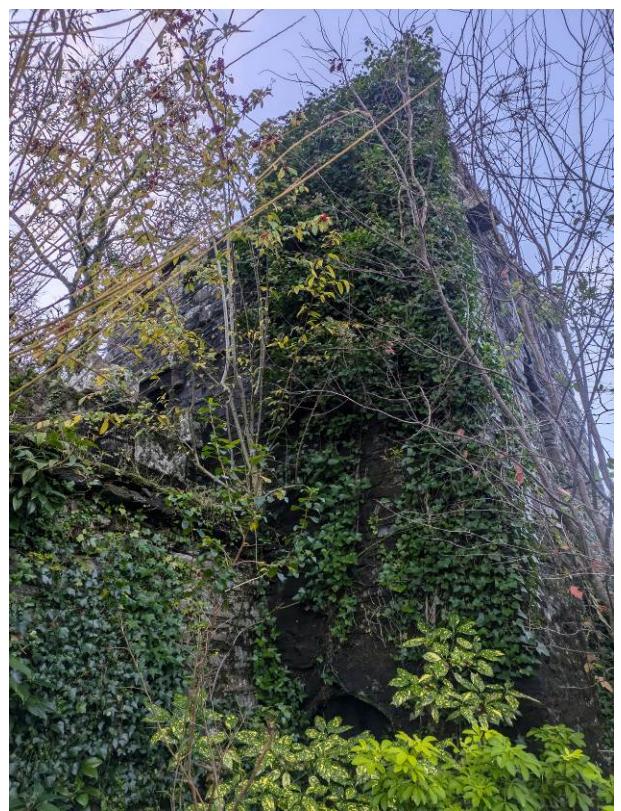
Allow to take paint scrapings to both turret softwood doors to laboratory to establish original colour matches. Fully prepare and repaint both softwood doors and frames to turret in high quality matt finish paint based on test results.

Replace rotten timber lintels to opening in west elevation at upper storey level.

APPENDIX A
PHOTOGRAPHS


View of the North-West Corner (**Image 1**)

View of the South-West Corner (**Image 2**)


View of the South-East Corner (**Image 3**)

View of North Elevation from Hotel Garden showing
Ivy Growth (**Image 4**)


South Elevation with a large amount of Damp Stonework (**Image 5**)

East Elevation (North Side) covered in Ivy (**Image 6**)

North Elevation (**Image 7**)

Brambles adjacent to Steps on North Elevation (**Image 8**)

East Tracery Window (**Image 9**)

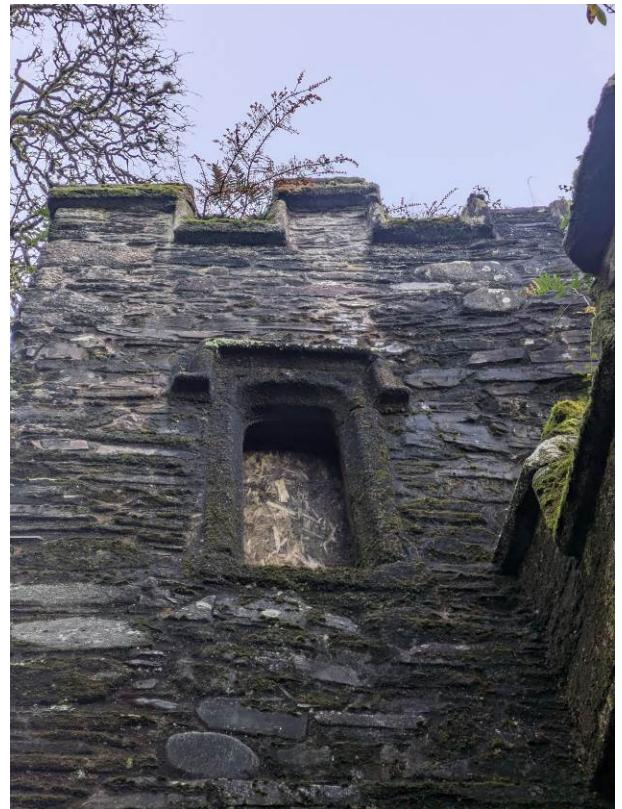
Large Gaps between Pointing to North Face of External Gate in Wall (**Image 10**)

Gate to South Elevation with Sockets of Missing Stone to the Wall (**Image 11**)

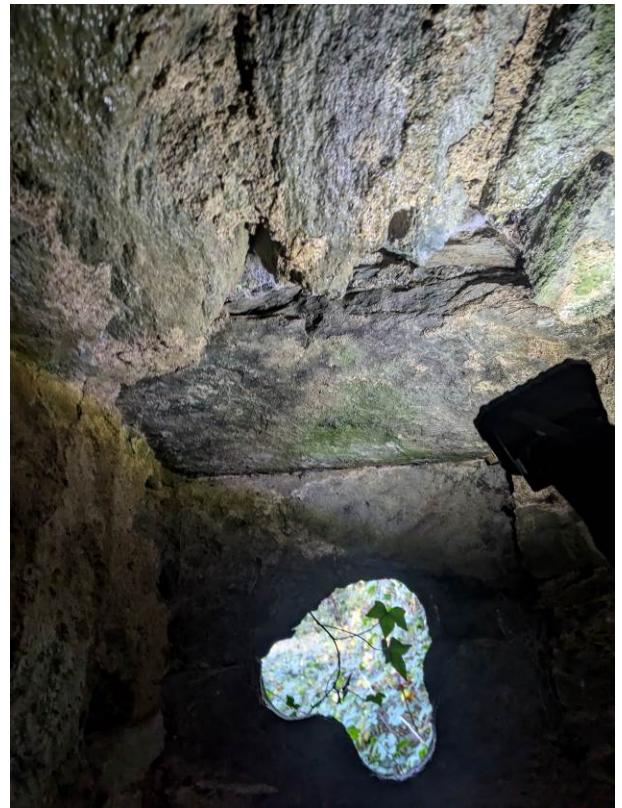
Northern window (**Image 12**)

Damage to Stone Surround (Image 13)

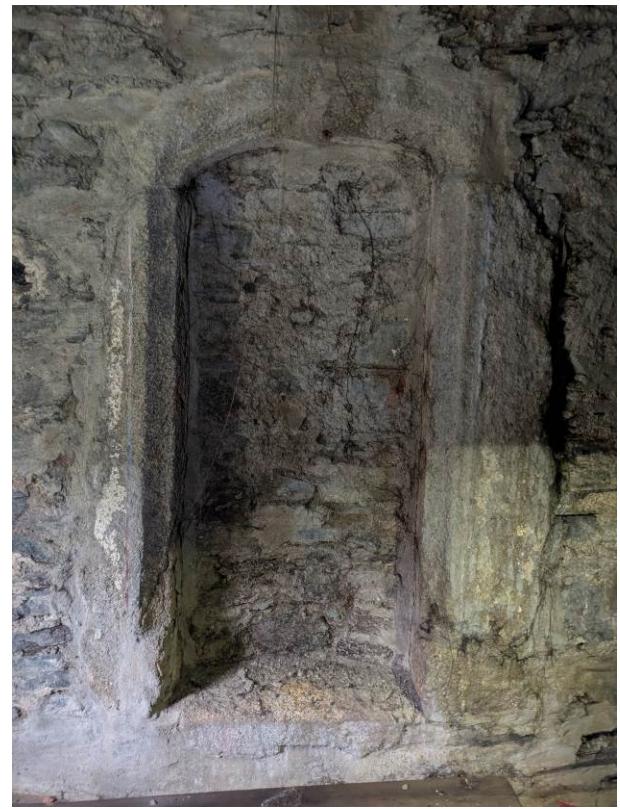
Erosion to Tracery on South Elevation Window (Image 14)


Failed Inappropriate Cement Pointing to Upper Storey Granite Door Surround (Image 15)

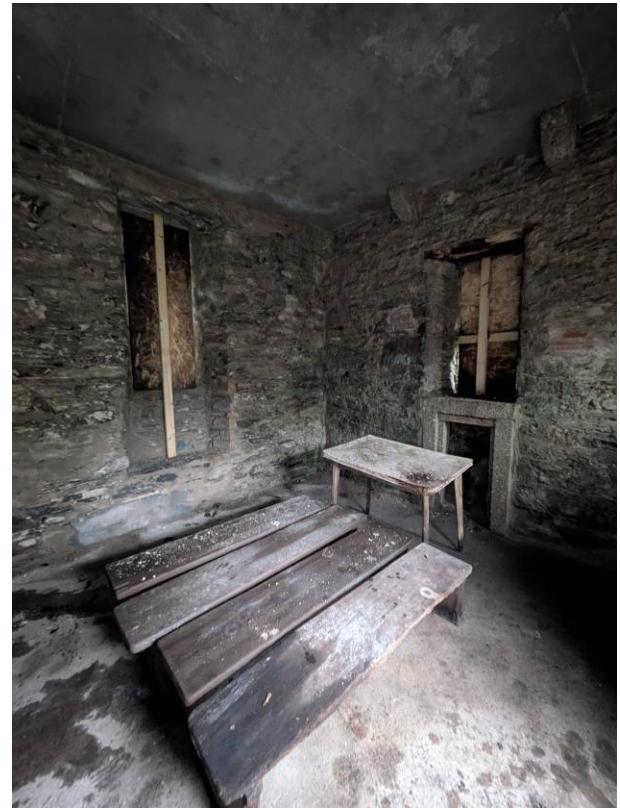

Stonework over Door to North Elevation (Image 16)


Tracery to Door on East Elevation Beginning to Erode (**Image 17**)

Window to East Elevation with Bulge Adjacent (**Image 18**)


Window to South Elevation (**Image 19**)

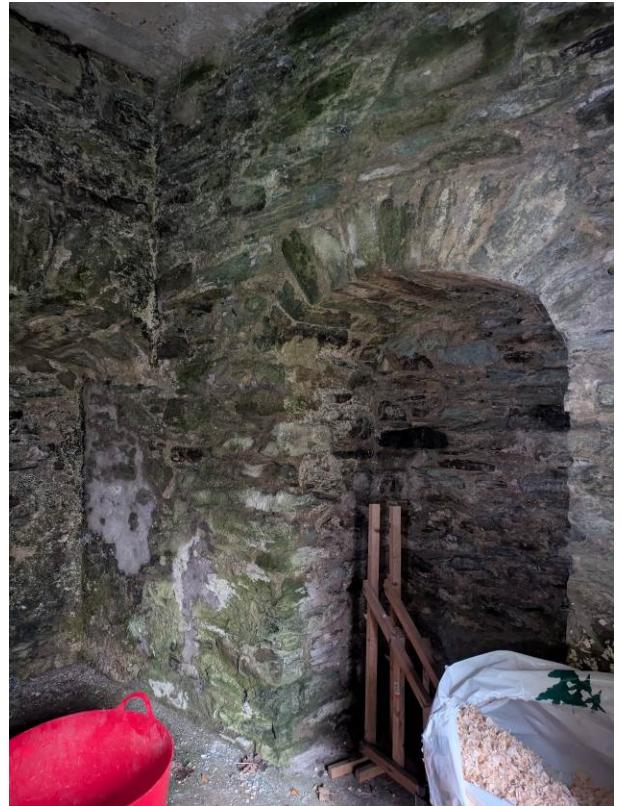
Internal Stonework to North Elevation Small Tracery Opening (**Image 20**)

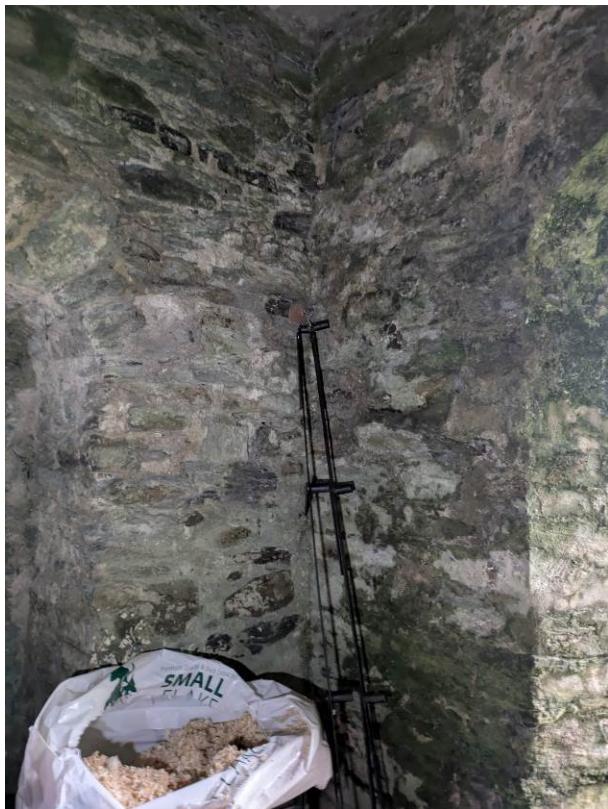

Rotten Timber Lintel to Window in West Elevation
(Image 21)

Blocked Door to East Elevation of Upper Level with Inappropriate Cement Slurry around it and Gaps in the Pointing **(Image 22)**

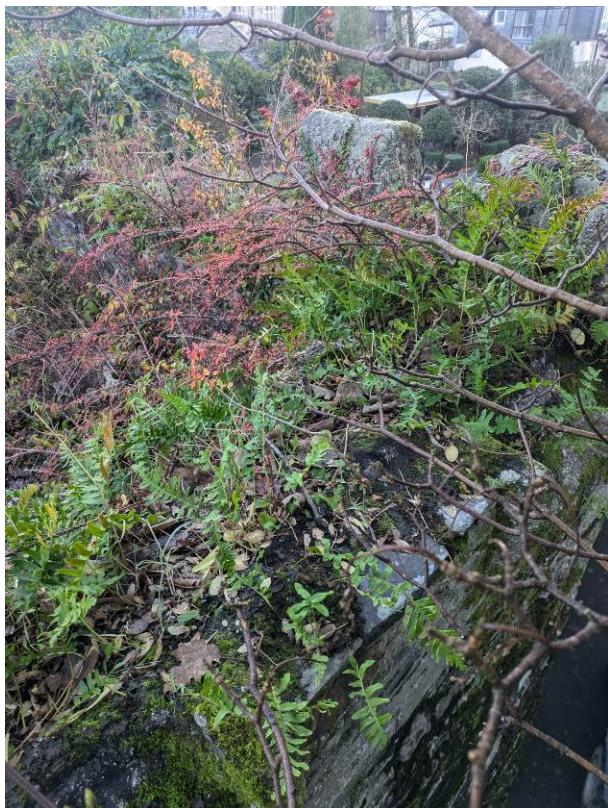
Ground Floor View of the North-West Corner
Showing Signs of Biological Growth and Damp Stonework **(Image 23)**

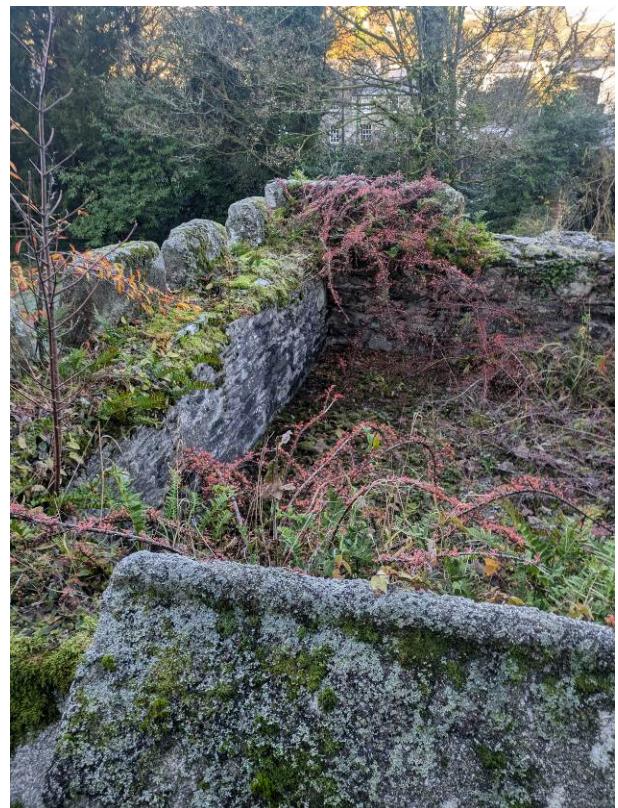
Internal View of South-West Corner **(Image 24)**


Roots coming into the east elevation and damp to high levels in the upper storey (**Image 25**)

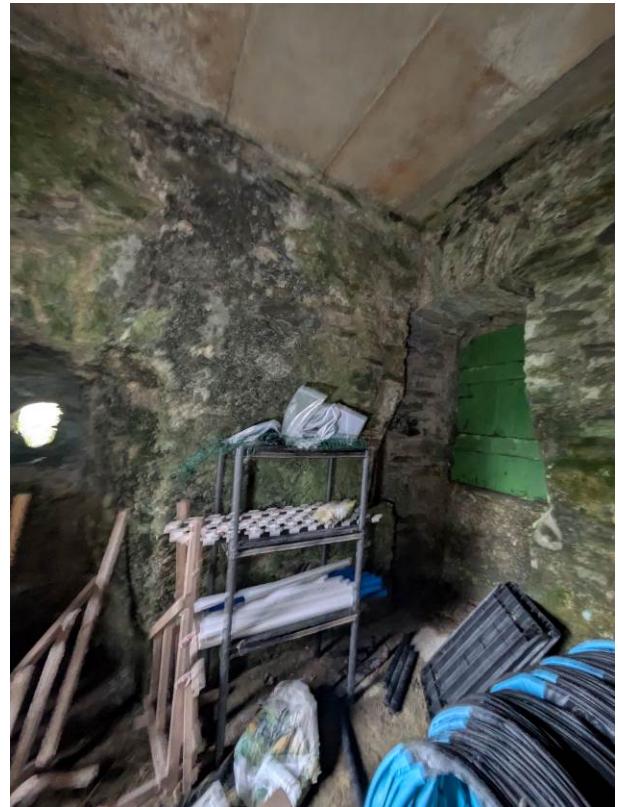

Underside of concrete floor slab with droplets of water (**Image 26**)

Upper storey north west corner showing missing pointing and evidence of damp (**Image 27**)


View of the south east corner at ground level (**Image 28**)


View of the south west corner at ground level
(Image 29)

Railing to steps on north elevation **(Image 30)**


View of the east side of the roof **(Image 31)**

View of the west side of the roof **(Image 32)**

Internal east elevation at ground level (**image 33**)

North east corner at ground level with biological growth (**image 34**)